The Extended Locus of Hodge Classes

نویسنده

  • CHRISTIAN SCHNELL
چکیده

We introduce an “extended locus of Hodge classes” that also takes into account integral classes that become Hodge classes “in the limit”. More precisely, given a polarized variation of integral Hodge structure of weight zero on a Zariski-open subset of a complex manifold, we construct a canonical analytic space that parametrizes limits of integral classes; the extended locus of Hodge classes is an analytic subspace that contains the usual locus of Hodge classes, but is finite and proper over the base manifold. The construction uses Saito’s theory of mixed Hodge modules and a small generalization of the main technical result of Cattani, Deligne, and Kaplan. We study the properties of the resulting analytic space in the case of the family of hyperplane sections of an odd-dimensional smooth projective variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ay 2 00 6 Hodge loci and absolute Hodge classes Claire Voisin

Let π : X → T be a family of smooth projective complex varieties. Assume X , π, T are defined over Q. An immediate consequence of the fact that there are only countably many components of the relative Hilbert scheme for π, and that the relative Hilbert scheme (with fixed Hilbert polynomial) is defined over Q, is the following: if the Hodge conjecture is true, the components of the Hodge locus i...

متن کامل

Fields of Definition of Hodge Loci

We show that an irreducible component of the Hodge locus of a polarizable variation of Hodge structure of weight 0 on a smooth complex variety X is defined over an algebraically closed subfield k of finite transcendence degree if X is defined over k and the component contains a k-rational point. We also prove a similar assertion for the Hodge locus inside the Hodge bundle if the Hodge bundle to...

متن کامل

Characteristic classes of mixed Hodge modules

This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the interaction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context. It uses M. Saito’s deep theory of mixed Hodge modules as a...

متن کامل

Algebraic Cycles and Singularities of Normal Functions, Ii

In our previous paper [14], denoted by “I”, and whose notations we shall follow here, we proposed a definition of extended normal functions (ENF), and for an ENF ν we defined its singular locus sing ν. There is a reciprocal relationship between primitive Hodge classes ζ ∈ Hg(X)prim and the corresponding ENF νζ . Moreover, algebraic cycles Z with [Z] = ζ give rise to singularities of νζ and vice...

متن کامل

The locus of Hodge classes in an admissible variation of mixed Hodge structure

Article history: Received 29 March 2010 Accepted 8 April 2010 Presented by Pierre Deligne We generalize the theorem of E. Cattani, P. Deligne, and A. Kaplan to admissible variations of mixed Hodge structure. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. r é s u m é On généralise le théorème de E. Cattani, P. Deligne, et A. Kaplan aux variations de structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014